FASTEN - Flexible and Autonomous Manufacturing Systems for Custom-Designed Products

Prof. Dr.-Ing. Enzo Morosini Frazzon
UFSC / INESC P&D BR / FASTEN project

Panel Session: Strategic Value Networks for Industry 4.0 chaired by John Soldatos
Overview

“The adoption of the IoT by Manufacturing is first and foremost a cultural and a management issue, rather than a technology issue” (IoTWeek 2018).

...

There is a huge potential for the proposition of tools that integrate physical processes and their virtual representation based on IoT data aiming at real-time decision-making capabilities (FASTEN D4.1 report).

My aims:
- To introduce an advanced manufacturing project dealing with a pilot application of IoT technologies, which helps developing the cultural and managerial framework.

- To discuss challenges and implications.
What is FASTEN?

Foster digital manufacturing sustainability and be an enabler of technology development between Brazil and Europe

Provide a multi-disciplinary decision support tool to improve trade-off analysis

Contribute to the competitiveness of Brazil and Europe
What is FASTEN?

The FASTEN “mission” is to develop, demonstrate, validate, and disseminate an integrated and modular framework for efficiently producing highly customized products.

FASTEN project will develop an open and standardized framework to produce and deliver tailor-designed products, and that is capable to run autonomously, and deliver fast and low cost additive manufactured products.
Combination of expertise and capabilities from Europe and Brasil
Main results

1. Intelligent handling of custom objects
2. Full connectivity among hardware and software components
3. Improve accuracy and provide better insights regarding the near-future
4. Solid understanding of the system's behaviour and its sensitivity to different parameters
5. Consideration of involved legacy systems and affected people
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement Nº 777096.
Predictive Real-Time Simulation and Optimization

A real-time application for monitoring of manufacturing system performance, using simulation, virtual commissioning, optimization and predictive analytical tools.

High interaction with the Robot and Manufacturing Systems Integration and with the Unified IoT Cloud Platform.

Specific Objectives:

- Integrate optimization algorithms with a virtual representation of the production facility, providing a tool for understanding, experimenting on and optimizing the system without the downsides of doing so in the real version.

- Deliver interpretable insights from the manufacturing data and implement predictive models to aid the manufacturing processes.

- Develop an integrated system for real-time, online monitoring of performance of manufacturing systems, encompassing a decision-making data driven visualization dashboard.
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement Nº 777096

Smart Robotic Additive Manufacturing Network

Manufacturing systems at Embraer Portugal
ThyssenKrupp Elevators Services

- Services represent 80% of TSK Brazil Revenue

- Preventive Maintenance
 - Periodic visit of the Maintenance Team (MT)
 - Performs necessary cleaning, lubricating and adjusting
 - If necessary, calls Corrective maintenance

- Corrective Maintenance
 - Can be triggered either by the preventive Maintenance Team or by the Client
 - Repair and fix any eventual problem that might be causing elevator malfunction or lack of operation.
 - Based on a network of 61 Back-Offices in different cities of Brazil, and a 24-hour availability for emergency calls and breakdowns

Outdated Spare Parts + High Lead Time
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement Nº 777096.
Problems Faced by TSK
FASTEN Solutions

Lack of **real-time information** to the back-office and MT

Lack of real-time information to the back-office and MT

Delivery cost and time of spare parts to MTs along the different regions of Brazilian territory.

70% of **elevators** demands **one-of-a-kind** spare parts

Additive Manufacturing

Optimization

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement Nº 777096
Use Case Objectives

<table>
<thead>
<tr>
<th>Objective 01</th>
<th>To develop a Smart Robotic Additive Manufacturing (SRAM) Unit, composed of 3D printers and a MMR, aiming to provide flexibility, scalability and agility to cope with spare parts demand.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 01</td>
<td>Smart Robotic Additive Manufacturing Unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objective 02</th>
<th>To develop and demonstrate a set of Optimization, Simulation and Predictive tools, not only capable of designing an optimal manufacturing network system configuration and spare parts production scheduling, but also perform these goals through real-time monitoring systems, improving responsiveness and supporting decision making.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 02</td>
<td>Smart Manufacturing Network</td>
</tr>
</tbody>
</table>
IoT Event Repository

Industrial IoT Platform

- Production Manager
 - ERP Connector

- Maintenance Team
 - Connector

- 3D Printer
 - SRAM Manager Connector
 - Mobile Manipulator Robot

- Advanced Plant Model
 - Connector

- Holistic Simulator-Optimizer Tool
 - Connector

- Real-Time Monitoring and Performance Management Tool
 - Connector

- Predictive and Prescriptive Analytic Tool
 - Connector

- SRAM Unit
 - Connector

- Production Manager (Client)
 - Connector

- APM
 - Connector

- Advanced Plant Model-Optimizer Tool
 - Connector

- Connector
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement Nº 777096

Smart Robot Additive Manufacturing Network

Manufacturing systems at Embraer Portugal
Embraer Physical Layout

Use Case Context

Scenario 1: Adaptive Pick and Place Robot for Logistics

Scenario 2: Wing Assembly Line Enhanced Decision and Management
Embraer Use Case

Scenario 2: Wing Assembly Line Enhanced Decision and Management

IoT Enabled and Coordinated for:
Disruption Simulation & Optimization and Analytics for Prediction and Prescription
Embraer: towards prescriptive maintenance
Predictive Real-Time Simulation and Optimization
Embraer Use Case - Requirements

• Scenario 2: Wing Assembly Line Enhanced Decision and Management Support
 • Main functionalities
 • Provide Scenario Analysis to Support WAL Balancing
 • Load Balance for New Product or Product Change
 • Calibrate Model Parameters with Real Data
 • Provide Best Date for Maintenance Event
 • Predictive Model Update
The impact of emerging IoT technologies and associated concepts will be huge in the manufacturing industry.

Research and application-oriented projects, as well as strategies and policies formulation and implementation underway.

Key takeaway points:
• A great moment for manufacturing, despite the challenges.

 • Data
 • Manufacturing digitalization*

 • Decision making models, procedures, capabilities
 • Increasing reliance on modelling, optimization and simulation*

• Emergence of knowledge-based + data-driven decision making models

• People
 • People, people, people everywhere. Care about them! Leverage their knowledge.
 • Social (distributed) manufacturing
 • Socio-cyber-physical systems (more interaction, not less!)

*https://www.researchgate.net/publication/318430955_Smart_manufacturing
Flexible and Autonomous Manufacturing Systems for Custom-Designed Products

Thank you Questions?

www.fastenmanufacturing.eu
Combination of expertise and capabilities from Europe and Brasil