1. What problems are being addressed?
Design an additive manufacturing supply chain in Brazil

Challenge: Setup large scale maintenance service based in 3D printing technology

Main focus
1. Improve responsiveness of technical assistance service
2. Increase manufacturing flexibility for supplying spare parts
3. Adapt (resize and reshape) parts and components, and material substitution
4. Reduce operating and inventory costs

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Grant Agreement Nº 777096.
1.1 What problems are being addressed?
Perform automatic picking and place (from warehouses boxes to assembly boxes)

Challenge: fully automate material handling tasks in the production line

Main focus
1. Improve the piece retrieval and kit preparation tasks
2. Provide faster and reliable supply of components to the production line

2. Strategic objectives
Foster digital manufacturing sustainability and be an enabler of IoT technologies development between Europe and Brazil
2.1 Specific objectives

To develop and demonstrate a flexible and scalable robotic system and its integration with mass customization production lines

1. Integrate robotics, AM and IoT and technologies
2. Standardize data repository and decision-making integration, from end-users (consumers) services to the manufacturing and supply levels
3. Optimize, synchronize, and improve the coordination in real-time of the production and logistic activities
4. Validate and demonstrate the FASTEN Framework in two cross-sectorial industrial pilot cases
5. Improve the overall supply-chain performance and decision-making effectiveness

3. Main results

1. Intelligent handling of custom objects
2. Full connectivity among all hardware and software components
3. Improve accuracy and provide better insights regarding the near-future
4. Solid understanding of the system's behaviour and its sensitivity to different parameters
3.1 Flexible and scalable robotic system
How to improve technical assistance service by reducing spare parts delivery lead time (from technicians demand to technical assistance service)?

3.2 Flexible and scalable robotic system

Goal: Automate kit assembly with pick and place
3.3 Open Industrial IoT Platform for custom-designed products

Simulation-optimization is used to model the dynamic behaviour of the manufacturing system:

1. to effectively solve integrative design, planning, and scheduling problems
2. How many 3D printers should be allocated to each region? Who should be the supplier for each spare part?
3.4 Predictive and prescriptive analytic tool

1. When should maintenance operations be performed on the drilling robots to maximize the production line productivity?

2. Online training of optimization algorithms for predicting failures (integration with planning and scheduling decision making)

Contacts

Samuel Moniz
INESC TEC [Centre for Enterprise Systems Engineering]
samuel.moniz@inesctec.pt